lib/main/nat-fast-power1.ath

lib/main/nat-fast-powerl.ath

This version of fast-power still uses embedded recursion but

eliminates one multiplication by inserting a test for n = one. An

optimization? Not if multiplication is a fixed-cost operation, since
the extra test doubles the number of test instructions.

extend-module N {
declare fast-power’: [N N] -> N
extend—-module fast-power {

assert axioms’ :=

(fun

[(fast-power’ x n) =
[one when (n = zero)
X when (n = one)

(square (fast-power x half n))
when (n =/= zero & n =/= one & Even n)

((square (fast-power x half n)) x x)
when (n =/= zero & n =/= one & ~ Even n)]])
define [if-zero’ if-one nonzero-nonone-even nonzero-nonone-odd] := axioms’

define nonzero-even’ :=
(forall x n
n =/= zero & Even n ==>
(fast-power’ x n) = square (fast-power x half n)
define nonzero-odd’ :=
(forall x n
n =/= zero & ~ Even n ==>
(fast-power’ x n) = (square (fast-power’ x half n)) * x)

conclude nonzero-even
pick-any x n
assume (n =/= zero & Even n)
(!'two-cases
assume (n = one)
(!from-complements

((fast-power’ x n) = square (fast-power x half n))
(Even n)
(!chain-> [(odd S zero)
==> (odd n) [(n = one) one-definition]
==> (~ even n) [EO.not-even-if-odd]]))
assume (n =/= one)
(!chain [(fast-power x n) = (square (fast-power’ x half n))

[nonzero—-nonone-even]]))

conclude nonzero-odd
pick-any x n
assume (n =/= zero & ~ even n)
(!'two—-cases
assume (n = one)
(!combine-equations

(!chain [(fast-power x n) --> x [if-onel])
(!chain [((square (fast-power x half n)) * x)
-—> ((square (fast-power’ x zero)) * Xx)
[(n = one) one-definition half.if-one]
—-=> ((square one) * x) [if-zero’]
—--> x [square.definition Times.left-one]ll))
assume (n =/= one)
(!chain
[(fast-power’ x n) —--> ((square (fast-power x half n)) * x)

[nonzero-nonone-odd]]))

lib/main/nat-fast-power1.ath

Now the same proof as given in nat-fast-power.ath works to prove:
define correctness’ := (forall n x . (fast-power x n) = x %% n)

conclude correctness’
(!'strong-induction.principle correctness’
(step fast-power’ if-zero’ nonzero-even’ nonzero-odd’))

The proof for fast-power still works:.

conclude correctness

(!'strong-induction.principle correctness

(step fast-power if-zero nonzero—-even nonzero-odd))
} # fast-power
} # N

