lib/main/nat-fast-power1.ath

```
1 # This version of fast-power still uses embedded recursion but
  \# eliminates one multiplication by inserting a test for n = one. An
  # optimization? Not if multiplication is a fixed-cost operation, since
  # the extra test doubles the number of test instructions.
7 load "nat-fast-power"
10 extend-module N {
\scriptstyle \text{II} declare fast-power': [N N] -> N
12 extend-module fast-power {
14 assert axioms' :=
15
   [(fast-power'x n) =
16
     [one
                                  when (n = zero)
17
                                 when (n = one)
18
       (square (fast-power' x half n))
19
                                  when (n = /= zero \& n = /= one \& Even n)
       ((square (fast-power' x half n)) * x)
21
                                 when (n = /= zero \& n = /= one \& \sim Even n)]])
22
24 #-----
26 define nonzero-even' :=
    (forall x n .
28
      n =/= zero & Even n ==>
       (fast-power' x n) = square (fast-power' x half n))
29
30 define nonzero-odd' :=
    (forall x n .
31
       n =/= zero & \sim Even n ==>
32
       (fast-power' x n) = (square (fast-power' x half n)) * x)
33
35 conclude nonzero-even'
   pick-any x n
37
     assume (n =/= zero & Even n)
       (!two-cases
38
          assume (n = one)
            (!from-complements
             ((fast-power' x n) = square (fast-power' x half n))
41
             (Even n)
             (!chain-> [(odd S zero)
43
                        ==> (odd n)
                                       [(n = one) one-definition]
                        ==> (~ even n) [EO.not-even-if-odd]]))
45
         assume (n =/= one)
           (!chain [(fast-power' x n) = (square (fast-power' x half n))
47
                                        [nonzero-nonone-even]]))
48
50 conclude nonzero-odd'
51
   pick-any x n
     assume (n =/= zero & ~ even n)
52
       (!two-cases
53
          assume (n = one)
55
           (!combine-equations
            (!chain [(fast-power' x n) --> x [if-one]])
56
            (!chain [((square (fast-power' x half n)) * x)
                     --> ((square (fast-power' x zero)) * x)
58
                        [(n = one) one-definition half.if-one]
                     --> ((square one) * x) [if-zero']
60
                     --> x [square.definition Times.left-one]]))
          assume (n =/= one)
            (!chain
63
             [(fast-power' x n) --> ((square (fast-power' x half n)) \star x)
                [nonzero-nonone-odd]]))
65
```

```
68  # Now the same proof as given in nat-fast-power.ath works to prove:
69
70  define correctness' := (forall n x . (fast-power' x n) = x ** n)
71
72  conclude correctness'
73    (!strong-induction.principle correctness'
74    (step fast-power' if-zero' nonzero-even' nonzero-odd'))
75
76  # The proof for fast-power still works:.
77
78  conclude correctness
79    (!strong-induction.principle correctness
80    (step fast-power if-zero nonzero-even nonzero-odd))
81  } # fast-power
82  } # N
```