Binary tree datatype

`load "list-of"

#---

datatype (BinTree S) := null | (node (BinTree S) S (BinTree S))
assert (datatype-axioms "BinTree")

module BinTree {
open List

define [x x' y T L R] :=
 [x:'S ?x':S ?y:'S
 ?T:(BinTree 'S) ?L:(BinTree 'S) ?R:(BinTree 'S)]
declare in: (S) [S (BinTree S)] -> Boolean

module in {
assert empty := (forall x . x in null)
assert nonempty :=
 (forall x L y R . x in (node L y R) ==> x = y | x in L | x in R)
..
Lemmas:
define root := (forall x L y R . x = y ==> x in (node L y R))
define left := (forall x L y R . x in L ==> x in (node L y R))
define right := (forall x L y R . x in R ==> x in (node L y R))
..
Proofs:
conclude root
pick-any x L y R
 (!chain
 [(x = y) ==> (x = y | x in L | x in R) [alternate]
 ==> (x in (node L y R)) [nonempty]])

conclude left
pick-any x L y R
 (!chain
 [(x in L) ==> (x in L | x in R) [alternate]
 ==> (x = y | x in L | x in R) [alternate]
 ==> (x in (node L y R)) [nonempty]])

conclude right
pick-any x L y R
 assume (x in R)
 (!chain->
 [(x in R) ==> (x in L | x in R) [alternate]
 ==> (x = y | x in L | x in R) [alternate]
 ==> (x in (node L y R)) [nonempty]])
}
in

inorder: applied to a binary-tree, produces a list of the tree elements
ordered so that the root element appears between the elements
of the left subtree and those of the right subtree (and recursively
the elements are in this order within each subtree).
declare inorder: (S) [(BinTree S)] -> (List S)
define join := List.join
module inorder {

assert empty := (inorder null = nil)
assert nonempty :=
 (forall L R x . inorder (node L x R) = (inorder L) join (x :: inorder R))
}

overload BinTree.in List.in

extend-module inorder {

define in-correctness-1 := (forall T x . x in inorder T ==> x in T)
define in-correctness-2 := (forall T x . x in T ==> x in inorder T)

by-induction in-correctness-1 {
 null =>
 pick-any x
 assume (x in inorder null)
 let (A := (![chain->
 [(x in inorder null)
 ==> (x in nil) [empty]]));
 B := (![chain-> [true ==> (~ x in nil) [List.in.empty]]])
){from-complements (x in null) A B}
 | (node L y R) =>
 let {ind-hyp1 := (forall ?x . ?x in inorder L ==> ?x in L);
 ind-hyp2 := (forall ?x . ?x in inorder R ==> ?x in R)}
 pick-any x
 assume A := (x in (inorder (node L y R)))
 let (B := (![chain->
 [A ==> (x in ((inorder L) join (y :: inorder R)))
 [nonempty]
 ==> (x in inorder L | (x in (y :: inorder R))) [List.in.of-join]
 ==> (x in inorder L | x = y | x in inorder R)
 [List.in.nonempty]]))
){cases B
 (!chain [(x in inorder L)
 ==> (x in L) [ind-hyp1]
 ==> (x in (node L y R)) [in.left]])
 (!chain [(x = y)
 ==> (x in (node L y R)) [in.root]])
 (!chain [(x in inorder R)
 ==> (x in R) [ind-hyp2]
 ==> (x in (node L y R)) [in.right]])}
 }

by-induction in-correctness-2 {
 null =>
 pick-any x
 (!from-complements (x in inorder null)
 (x in null)
 (!chain-> [true ==> (~ x in null) [in.empty]])
){node L y R} =>
 let {ind-hyp1 := (forall ?x . ?x in inorder L ==> ?x in L);
 ind-hyp2 := (forall ?x . ?x in inorder R ==> ?x in R)}
 pick-any x
 assume A := (x in (node L y R))
 conclude (x in (inorder (node L y R)))
 let (C := (![chain-> [A ==> (x = y | x in L | x in R)
 [in.nonempty]]}))
){cases C
 assume (x = y)
 (!chain->
 ![x = y]
 ==> (x in (inorder R)) [List.in.head]
 ==> (x in (y :: inorder R)) [x = y]
 ==> (x in inorder L | x in (y :: inorder R)) [alternate]
 ==> (x in ((inorder L) join (y :: inorder R))) [List.in.of-join]}
 }
}
define in-correctness := (forall T x . x in (inorder T) <=> x in T)

conclude in-correctness
 pick-any T:(BinTree 'S) x
 (!equiv
 (!chain [(x in inorder T) ==> (x in T) [in-correctness-1]])
 (!chain [(x in T) ==> (x in inorder T) [in-correctness-2]])
)
inorder

count: given a value x and a binary tree, returns the number of occurrences of x in the tree.
declare count: (S) [S (BinTree S)] -> N
overload BinTree.count List.count

module count {
 define (axioms as [empty more same]) :=
 (fun
 [S (null) = zero]
 [S ((count x L) + (count x R)) when (x = x')]
 [S (count x L) + (count x R)) when (x /= x')]])
 assert axioms}
count

extend-module inorder {
 define count-correctness :=
 (forall T x . (count x (inorder T)) = (count x T))
Proof:
by-induction count-correctness {
 null =>
 conclude (forall ?x . (count ?x inorder null) =
 (BinTree.count ?x null))
 pick-any x
 let {A := (!chain [(count x inorder null) =
 [count x nil] [empty] =
 zero [List.count.empty]]);
 B := !chain [(count x null) =
 zero [count.empty]])
 (!combine-equations A B)}
 | (node L y R) =>
 let {ind-hyp1 := (forall ?x . (count ?x inorder L) = (count ?x L));
 ind-hyp2 := (forall ?x . (count ?x inorder R) = (count ?x R))}
conclude (forall ?x . (count ?x (inorder (node L y R))) =
 (count ?x (node L y R)))

pick-any x

!two-cases

 assume (x = y)

 (!combine-equations

 (!chain
 [(count x (inorder (node L y R)))
 = (count x ((inorder L) join (y :: inorder R)))
 [nonempty]
 = ((count x inorder L) +
 (count x (y :: inorder R)))
 [list.count.of-join]
 = ((count x inorder L) + (S (count x inorder R)))
 [list.count.more]
 = (S ((count x inorder L) + (count x inorder R)))
 [N.Plus.right-nonzero])]

 (!chain
 [(count x (node L y R))
 = (S ((count x L) + (count x R)))
 [count.more]
 = (S ((count x inorder L) + (count x inorder R)))
 [ind-hyp1 ind-hyp2]])])

 assume (x != y)

 (!combine-equations

 (!chain
 [(count x (inorder (node L y R)))
 = (count x ((inorder L) join (y :: inorder R)))
 [nonempty]
 = ((count x inorder L) +
 (count x (y :: inorder R)))
 [list.count.of-join]
 = ((count x inorder L) + (count x inorder R))
 [list.count.same]])

 (!chain
 [(count x (node L y R))
 = ((count x L) + (count x R))
 [count.same]
 = ((count x inorder L) + (count x inorder R))
 [ind-hyp1 ind-hyp2]])])

) # by-induction

| # inorder
| # BinTree

EOF

(load "c:\\np\\lib\\search\\binary-tree")