Binary search function for searching in a binary search tree, and
correctness theorems. Generalized from natural number version in
binary-search1-nat.ath.

load "binary-search-tree"

#---

extend-module SWO {
 declare binary-search: (S) [S (BinTree S)] -> (BinTree S)

 module binary-search {
 define [x L y R L1 y1 R1 T] :=
 [?x: S ?L: (BinTree 'S) ?y: S ?R: (BinTree 'S)
 ?L1: (BinTree 'S) ?y1: S ?R1: (BinTree 'S)
 ?T: (BinTree 'S)]

 define (axioms as [go-left go-right at-root empty]) :=
 (fun
 [(binary-search x (node L y R)) =
 (binary-search x L) when (x < y)
 (binary-search x R) when (y < x)
 (node L y R) when (~ x < y & ~ y < x)]
 (binary-search x null) = null)

 (add-axioms theory axioms)

 # Theorems:

 define in := BST.in

 define found :=
 (forall T . BST T =>
 forall x L y R .
 (binary-search x T) = (node L y R) => x E y & x in T)

 define not-found :=
 (forall T . (binary-search x T) = null => ~ x in T)

 define in-iff-result-not-null :=
 (forall T . BST T =>
 forall x . (binary-search x T) = null => ~ x in T)

 define tree-axioms := (datatype-axioms "BinTree")

 define found-property T :=
 (forall x L1 y1 R1 .
 (binary-search x T) = (node L1 y1 R1) => x E y1 & x in T)

 define not-found-prop T :=
 (forall x . (binary-search x T) = null => ~ x in T)

 define proofs :=
 method (theorem adapt)
 let {[get prove chain chain-> chain<-] := (proof-tools adapt theory);
 [< <E E BST binary-search] :=
 (adapt [< <E E BST binary-search])}
 match theorem {
 (val-of found) =>
 by-induction (adapt theorem) {
 null =>
 conclude (BST null => found-property null)
 assume (BST null))}
pick-any x L y R

assume A := {(binary-search x null) = (node L y R)}

let {is-null :=
 (!chain->
 [null
 = (binary-search x null) [empty]
 = (node L y R) [A]]);
 is-not := {!chain-> (null /= (node L y R))
 [true ==> (null /= (node L y R))]}
}(!from-complements (x E y & x in null) is-null is-not)

| (T as (node L:(BinTree 'S) y:'S R:(BinTree 'S)) ==>
let [{ind-hyp1 ind-hyp2} := [(BST L ==> found-property L)
 (BST R ==> found-property R)]}
assume hyp := (BST T)

conclude (found-property T)

let {p0 := (BST L & (forall x . x in L ==> x <E y) &
 BST R & (forall z . z in R ==> y <E z));
 _ := (!chain-> [p0 ==> p0 [BST.nonempty]]);
 fpl := (!chain->
 [p0 ==> (BST L) [left-and]
 ==> (x E y & x in L) [fpl]
 ==> (x E y & x in T) [in-left]])
 fpr := (!chain->
 [p0 ==> (BST R) [prop-taut]
 ==> (found-property R) [ind-hyp2]])
}(!two-cases

assume (x < y)

let {in-left := (!prove BST.in.left)}

(!chain->
 [(binary-search x L)
 = (binary-search x T) [go-left]
 = subtree [hyp']
 ==> (x E y & x in L) [fpl]
 ==> (x E y & x in T) [in-left]])
assume (~ x < y)

(!two-cases

assume (y < x)

let {in-right := (!prove BST.in.right)}

(!chain->
 [(binary-search x R)
 = (binary-search x T) [go-right]
 = subtree [hyp']
 ==> (x E y & x in R) [fpr]
 ==> (x E y & x in T) [in-right]])
assume (~ y < x)

let {_ := (!chain->
 [(~ x < y & ~ y < x)
 ==> (x E y) [E-definition]]);
 i := conclude (y = y1)
 (!chain->
 [T = (binary-search x T)
 = subtree [hyp']
 ==> (y = y1) [tree-axioms]]);
 ii := conclude (x E y1)
 (!chain->
 [x E y]
 ==> (x E y1) [i])
 in-root := (!prove BST.in.root)
 (!chain->
 [(x E y)
 ==> (x E y1) [i]]);
 i := conclude (x E y)
 (!chain->
 [(x E y)
 ==> (x E y1) [ii]]
 ==> (x E y1) [at-root]
 ==> (x E y1) [tree-axioms]])
)

| {val-of not-found} =>
by-induction (adapt theorem) {
 null =>
}
assume (BST null)
conclude (not-found-prop null)
pick-any x
assume ((binary-search x null) = null)
 (!chain-> [true ==> (~ x in null) [BST.in.empty]])
| (T as (node L y R)) =>
let {p1 := (not-found-prop L),
 p2 := (not-found-prop R);
 [ind-hyp1 ind-hyp2] := [(BST L ==> p1) (BST R ==> p2)]}
assume hy := (BST T)
conclude (not-found-prop T)
let {smaller-in-left := (forall x . x in L ==> x <E y);
 larger-in-right := (forall z . z in R ==> y <E z);
 p0 := (BST L & smaller-in-left &
 BST R & larger-in-right);
 _ := (!chain-> [p0 ==> (not-found-prop L) [BST.nonempty]]);
 _ := (!chain-> [p0 ==> smaller-in-left [prop-taut]]);
 _ := (!chain-> [p0 ==> larger-in-right [prop-taut]]);
 _ := (!chain-> [p0]
 ==> (BST L) [prop-taut]
 ==> (not-found-prop L) [ind-hyp1])}
pick-any x
assume hy' := ((binary-search x T) = null)
 (!by-contradiction (~ x in (node L y R))
assume (x in T)
 !two-cases
 assume (x < y)
 let {_ := (!chain->
 [(binary-search x L)
 = (binary-search x T) [go-left]
 = null [hy']
 ==> (~ x in L) [p1]])}
 !cases C
assume (x E y)
 (!absurd
 (x < y)
 (!chain->
 [(x E y)
 ==> (~ x < y & ~ y < x) [E-definition]
 ==> (~ x < y) [left-and]])
 assume (x in L)
 (!absurd (x in L) (~ x in L))
assume (x in R)
 (!absurd (x < y)
 (!chain->
 [(x in R)
 ==> (y <E x) [larger-in-right]
 ==> (~ x < y) [E-definition]])
 assume (~ x < y)
 !two-cases
 assume (y < x)
 let {_ := (!chain->
 [(binary-search x R)
 = (binary-search x T) [go-right]
 = null [hy']
 ==> (~ x in R) [p2]])}
 !cases C
assume (x E y)
 (!absurd
 (y < x)
 (!chain->
 [(x E y)
 ==> (~ x < y & ~ y < x) [E-definition]]

lib/search/binary-search.ath

```plaintext
=> (~ y < x)  [right-and)]))
assume (x in L)
(!absurd
 (y < x)
(!chain->
 [(x in L)
  => (x <E y)  [smaller-in-left]
  => (~ y < x)  [<E-definition]]))
assume (x in R)
(!absurd (x in R) (~ x in R))
assume (~ y < x)
(!absurd
 (!chain->
 [null = (binary-search x T) [hyp']
  = T  [at-root]]
 (!chain->
 [true
  => (null /= T)  [tree-axioms]]))))
}
{| (val-of in-iff-result-not-null) =>
pick-any T
assume (BST T)
let (NF := (!prove not-found);
 F := (!prove found))
pick-any x
let (right :=
 assume (x in T)
 (!by-contradiction ((binary-search x T) /= null)
 assume A1 := ((binary-search x T) = null)
 (!absurd (x in T)
  (!chain-> [A1 => (~ x in T) [NF]])));
left :=
 assume A2 := ((binary-search x T) /= null)
  (binary-search x T) = (node ?L ?y ?R));
   _ := (!chain->
    [true
     => ((binary-search x T) = null | p)
     [tree-axioms]
     => p
    [(dsyl with A2)])]
 pick-witnesses L y R for p p'
 (!chain->
 [p' => (x E y & x in T) [F]
  => (x in T)  [right-and]))
}{!equiv right left}
) # match theorem

(add-theorems theory |{theorems := proofs}|)
)| # binary-search
)| # SWO
```