Binary search trees, a subset of binary trees defined by a
predicate, BST.

load "ordered-list-nat"
load "binary-tree"

#---

extend-module BinTree {

define [< <=] := [N.< N.<=]
declare BST: [(BinTree N)] -> Boolean
declare no-smaller, no-larger: [(BinTree N) N] -> Boolean

assert* no-smaller-def :=
 [(null no-smaller _)
 (node L y R) no-smaller x <=> x <= y &
 L no-smaller x &
 R no-smaller x]]

assert* no-larger-def :=
 [(null no-larger _)
 (node L y R) no-larger x <=> y <= x &
 L no-larger x &
 R no-larger x]]

module BST {

 assert* definition :=
 [(BST null)
 (BST (node L x R) <=> BST L & L no-larger x &
 BST R & R no-smaller x)]

 # Characterization properties:

 assert empty := (BST null)

 assert nonempty :=
 (forall L y R .
 BST (node L x R) <=> BST L & (forall x . x in L ==> x <= y) &
 BST R & (forall z . z in R ==> y <= z))

 # Though asserted here, empty and nonempty follow from no-smaller-def
 # and no-larger-def. The proof is an exercise in the textbook.

 #---

 # Theorem: the inorder function applied to a binary search tree
 # produces an ordered list. (Proved here only for natural number
 # elements.)

 define ordered := List.ordered

 define is-ordered :=
 (forall T . BST T ==> (ordered (inorder T)))

 by-induction is-ordered {
 null:(BinTree N) =>
 assume (BST null)
 ![chain->
 [true ==> (ordered nil:(List N)) [empty]
 ==> (ordered (inorder null:(BinTree N))) [inorder.empty]])
 | (node L:(BinTree N) y:N R:(BinTree N)) =>
 }
let {ind-hyp1 := ((BST L) ==> (ordered inorder L));
ind-hyp2 := ((BST R) ==> (ordered inorder R));
smaller-in-left := (forall ?x . ?x in L ==> ?x <= y);
larger-in-right := (forall ?z . ?z in R ==> y <= ?z)}
assume A := (BST (node L y R))
conclude goal := (ordered (inorder (node L y R)))
let {C1 := (!chain->
 [A ==> ((BST L) & smaller-in-left & (BST R) & larger-in-right)
 [nonempty]]);
C2 := (!chain-> [C1 ==> (BST L) [left-and]]
 ==> (ordered inorder L) [ind-hyp1]]);
C3 := (!chain-> [C1 ==> (BST R) [prop-taut]]
 ==> (ordered inorder R) [ind-hyp2]]);
C4 := (!chain-> [C1 ==> smaller-in-left [prop-taut]]);
C5 := (!chain-> [C1 ==> larger-in-right [prop-taut]]);
C6 := conclude (forall ?x ?y .
 ?x in inorder L & ?y in (y :: inorder R)
 ==> ?x <= ?y)
 pick-any u v
 assume A1 := (u in inorder L &
 v in (y :: inorder R))
 let {D1 := (!chain->
 [A1 ==> (u in inorder L &
 (v = y | v in inorder R))
 [List.in.nonempty]
 ==> (u in L & (v = y | v in R))
 [inorder.in-correctness]
 ==> ((u in L & v = y) |
 (u in L & v in R)) [prop-taut]])
 (!cases D1
 assume (u in L & v = y)
 (!chain->
 [u in L] ==> (u <= y) [smaller-in-left]
 ==> (u <= v) [(v = y)]))
 (!chain [[u in L & v in R]
 ==> (u <= y & y <= v) [smaller-in-left
 larger-in-right]
 ==> (u <= v) [Less=.transitive]]));
C7 := conclude (forall ?z . ?z in inorder R ==> y <= ?z)
 pick-any z
 (!chain [[z in inorder R]
 ==> (z in R) [inorder.in-correctness]
 ==> (y <= z) [larger-in-right]])
 (!chain->
 [C3 ==> (C3 & C7) [augment]
 ==> (ordered (y :: inorder R)) [List.ordered.cons]
 ==> (C2 & (ordered (y :: inorder R)) [augment]
 ==> (C2 & (ordered (y :: inorder R)) & C6) [augment]
 ==> (ordered ((inorder L) join (y :: inorder R)))
 [List.ordered.append]
 ==) goal [inorder.nonempty])
}
BST
BinTree