lib/memory-range/swap-implementation.ath

load "memory"

extend-module Memory {
 define t := ?t:(Loc 'S)

 define swap-open-implementation :=
 (forall M a b t M1 M2 M3 .
 a /= t & b /= t &
 M1 = M \ t <- (M at a) &
 M2 = M1 \ a <- (M1 at b) &
 M3 = M2 \ b <- (M2 at t) &
 ==> M3 = (M \ t <- (M at a)) \ (swap a b))

 define swap-implementation :=
 (forall M a b x M1 M2 .
 x = (M at a) &
 M1 = M \ a <- (M at b) &
 M2 = M1 \ b <- x &
 ==> M2 = M \ (swap a b))

 #--
 define proofs :=
 method (theorem adapt)
 let {
 [get prove chain chain-> chain<-] := (proof-tools adapt theory);
 [at \ swap] := (adapt [at \ swap]);
 [eq uneq] := [assign.equal assign.unequal]
 }
 match theorem {
 (val-of swap-open-implementation) =>
 pick-any M:(Memory 'S) a:(Memory.Loc 'S) b:(Memory.Loc 'S)
 t:(Memory.Loc 'S) M1:(Memory 'S) M2:(Memory 'S)
 M3:(Memory 'S)
 let {i := (M1 = M \ t <- (M at a));
 ii := (M2 = M1 \ a <- (M1 at b));
 iii := (M3 = M2 \ b <- (M2 at t)))
 assume (a /= t & b /= t & i & ii & iii)
 conclude (M3 = (M \ t <- (M at a)) \ (swap a b))
 ...

 #two-cases
 assume (b = a)
 !chain
 [!(M3 at a)]
 = ((M2 \ b <- (M at a)) at a) [II]
 = (M at a) [eq]
 = (M at b) [(b = a)]
 assume (b /= a)
 !chain
 [!(M3 at a)]
 = ((M2 \ b <- (M at a)) at a) [II]
 = (M at a) [eq]
 = (M at b) [(b = a)]
 = ((M \ t <- (M at a)) at b) [i]
 = (M at b) [uneq])};

 III := conclude (M3 at a = M at b)

 IV := pick-any u
 conclude (M3 at u =
 ((M \ t <- (M at a)) \ (swap a b)) at u)
(!three-cases
 assume (a = u)
 (!combine-equations
 (!chain
 [\(M3 \text{ at } u\)]
 = (M3 at a) \([a = u]\])
 = (M at b) \([III]\)
 = ((M \ t <- (M at a)) at b) \([\text{uneq}]\])
 (!chain
 [(((M \ t <- (M at a)) \ (swap a b)) at u)]
 = ((M \ t <- (M at a)) \ (swap a b)) at a)
 \([a = u]\])
 = ((M \ t <- (M at a)) at b) \([\text{swap.equal1}]\)))
 assume (b = u)
 (!combine-equations
 (!chain
 [\(M3 \text{ at } u\)]
 = (M3 at b) \([b = u]\])
 = ((M2 \ b <- (M2 at t)) at b) \([\text{iii}]\)
 = (M2 at t) \([\text{eq}]\)
 = (M at a) \([I]\)
 = ((M \ t <- (M at a)) at a) \([\text{uneq}]\])
 (!chain
 [(((M \ t <- (M at a)) \ (swap a b)) at u)]
 = ((M \ t <- (M at a)) \ (swap a b)) at b)
 \([b = u]\])
 = ((M \ t <- (M at a)) at a) \([\text{swap.equal2}]\)))
 assume (a \neq u \& b \neq u)
 (!combine-equations
 (!chain
 [\(M3 \text{ at } u\)]
 = ((M2 \ b <- (M2 at t)) at u) \([\text{iii}]\)
 = (M2 at u) \([\text{uneq}]\)
 = ((M1 \ a <- (M1 at b)) at u) \([\text{ii}]\)
 = (M1 at u) \([\text{uneq}]\)
 = ((M \ t <- (M at a)) at u) \([I]\])
 (!chain
 [(((M \ t <- (M at a)) \ (swap a b)) at u)]
 = ((M \ t <- (M at a)) \ (swap a b)) at b)
 \([b = u]\])
 = ((M \ t <- (M at a)) at u) \([\text{swap.unequal}]\)))))
 (!chain
 [M3 = ((M \ t <- (M at a)) \ (swap a b)) \([\text{equality}]\)])
 (!two-cases
 assume (b = a)
 (!chain
 [(M2 at a)]
 = (M2 \ b <- x) at a) \([\text{iii}]\)
 = ((M1 \ b <- (M at a)) at a) \([I]\));
 II := (M2 at a = M at b)
)
 assume (b \neq a)
 (!chain
 [(M2 at a)]
 = (M1 \ b <- (M at a)) at a) \([\text{ii}]\)
 = (M at a) \([\text{uneq}]\)
 = (M1 at a) \([\text{eq}]\));
 assume (b =/= a)
 (!chain
 [(M2 at a)]
 = (M1 \ b <- (M at a)) at a) \([I]\)
 = (M at a) \([\text{uneq}]\)
 = ((M \ a <- (M at b)) at a) \([\text{ii}]\)
 = (M at b) \([\text{eq}]\));
 III :=
 pick-any u)}
conclude (M2 at u = (M \ (swap a b)) at u)

(!three-cases

assume (a = u)

(!combine-equations

(!chain

[M2 at u]

= (M2 at a) \[[a = u]\]

= (M at b) \[[I]\])

(!chain

[((M \ (swap a b)) at u)

= ((M \ (swap a b)) at a) \[[a = u]\]

= (M at b) \[swap.equal1]\]])

assume (b = u)

(!combine-equations

(!chain

[M2 at u]

= (M2 at b) \[[b = u]\]

= ((M1 \ b <- x) at b) \[[iii]\]

= x \[eq]\n
= (M at a) \[[i]\])

(!chain

[((M \ (swap a b)) at u)

= ((M \ (swap a b)) at b) \[[b = u]\]

= (M at a) \[swap.equal2]\]])

assume (a /= u & b /= u)

(!combine-equations

(!chain

[M2 at u]

= ((M1 \ b <- x) at u) \[[iii]\]

= (M1 at u) \[uneq]\n
= ((M \ a <- (M at b)) at u) \[[ii]\]

= (M at u) \[uneq]\])

(!chain

[((M \ (swap a b)) at u)

= (M at u) \[swap.unequal]\]])

(!chain [M2 = (M \ (swap a b)) \[equality]\])

)

(add-theorems theory

{|[swap-open-implementation swap-implementation] := proofs|}

)