lib/memory-range/range.ath

load "nat-plus"
domain (It X S)

datatype (Range X S) :=
 (stop (It X S)) # An empty range beginning and ending at the
 # given iterator
 | (back (Range X S)) # A range that begins one step back from where
 # the argument range begins

assert Range-axioms := (datatype-axioms "Range")

#..

module Range {
 define theory := (make-theory [] [])

 define [h i i' j j' r r'] :=
 [h:(It X S) ?i:(It X S) ?i':(It X S) ?j:(It X S) ?j':(It X S) ?r:(Range X S) ?r':(Range X S)]

 # (start r) returns the beginning of range r
 declare start: (X, S) [(Range X S)] -> (It X S)

 module start {
 define of-stop := (forall i . start stop i = i)
 define injective := (forall r r' . start r = start r' ==> r = r')
 (add-axioms theory [of-stop injective])
 }

 # (finish r) returns the end of range r
 declare finish: (X, S) [(Range X S)] -> (It X S)

 module finish {
 define of-stop := (forall i . finish stop i = i)
 define of-back := (forall r . finish back r = finish r)
 (add-axioms theory [of-stop of-back])
 }

 declare range: (X, S) [(It X S) (It X S)] -> (Option (Range X S))

 module range {
 define collapse := (forall r . (range (start r) (finish r)) = SOME r)
 define injective :=
 (forall i j i' j'. (range i j) = (range i' j') ==> i = i' & j = j')
 define start-back :=
 (forall i j r . (range i j) = SOME back r ==> i = start back r)
 (add-axioms theory [collapse injective start-back])
 }

 declare empty: (X, S) [(Range X S)] -> Boolean

 module empty {
 define of-stop := (forall i . empty stop i)
 define of-back := (forall r . ~ empty back r)
 (add-axioms theory [of-stop of-back])
 }
}
declare length : (X, S) [(Range X S)] -> N

module length {

 define of-stop := (forall j . length stop j = zero)
 define of-back := (forall r . length back r = S length r)

 (add-axioms theory [of-stop of-back])
}

Range theorems:

define nonempty-back := (forall r . start back r /= finish back r)
define nonempty-back1 :=
 (forall i j r . (range i j) = SOME back r ==> i /= j)
define back-not-same := (forall r . back r /= r)
define empty-range := (forall i . (range i i) = SOME stop i)
define empty-range1 :=
 (forall h i j . (range i j) = SOME stop h ==> i = j)
define zero-length :=
 (forall r . length r = zero ==> exists i . r = stop i)
define nonzero-length :=
 (forall r . length r /= zero ==> exists r' . r = back r')
define theorems := [nonempty-back nonempty-back1 back-not-same empty-range empty-range1 zero-length nonzero-length]
define proofs :=
method (theorem adapt)
let {[get prove chain chain-> chain<-] := (proof-tools adapt theory)}
match theorem {
 (val-of nonempty-back) =>
 pick-any r
 (by-contradiction (start back r /= finish back r))
assume A := (start back r = finish back r)
(!absurd
 (!chain-> [(start back r) = (finish back r) [A]
 = (start stop finish r) [finish.of-back]
 = (start of-stop) [start.of-stop]
 ==> (back r = stop finish r) [start.injective]])
 (!chain-> [true ==> (stop finish r /= back r) [Range-axioms]
 ==> (back r /= stop finish r) [sym]]))
 | (val-of nonempty-back1) =>
 pick-any r
 assume A := ((range i j) = SOME back r)
 conclude (i /= j)
let {NB := (!prove nonempty-back)};
B := (!chain->
 [(range i j) = (SOME back r) [A]
 = (range (start back r)
 (finish back r)) [range.collapse]
 ==> (i = start back r &
 j = finish back r) [range.injective]])
 (!chain->
 [true ==> (start back r /=
 finish back r) [NB]
 ==> (i /= j) [B]])
 | (val-of back-not-same) =>
 by-induction (adapt theorem) {
 (stop i) =>
 (!chain->
 [true ==> (stop i /= back stop i) [Range-axioms]
 ==> (back stop i /= stop i) [sym]])
 | (back r) =>
 let {ind-hyp := (back r /= r)}
 (!chain->
[(ind-hyp ==> (back back r =/= back r) [Range-axioms]))
]

| (val-of empty-range) =>
 pick-any i.
 \{chain
 \{range i i\} = (range (start stop i) (finish stop i)) [start.of-stop
 finish.of-stop]
 \{SOME stop i\} [range.collapse]\}
 |
 | (val-of empty-range) =>
 pick-any h:(It X S) i:(It X S) j:(It X S)
 assume A := ((range i j) = SOME stop h)
 conclude (i = j)
 let EL := (!prove empty-range);
 (and B1 B2) :=
 \{chain->
 \{some stop h\} [A]
 \{range h\} [EL]
 \{i = h & j = h\} [range.injective]\})
 |
 | (val-of zero-length) =>
 datatype-cases (adapt theorem) {
 (stop i) =>
 assume A := (length stop i = zero)
 (!chain->
 \{(stop i = stop i) => (exists ?i . stop i = stop ?i) \[existence]\})
 (!chain ->
 \{true ==> (S length r =/= zero) \[N.S-not-zero]\}
 \{length back r =/= zero \[length.of-back]\}))
 | (back r) =>
 assume A := (length back r = zero)
 (!from-complements (exists ?i . back r = stop ?i)
 A)
 (!chain->
 \{true ==> (S length r =/= zero) \[N.S-not-zero]\}
 \{length back r =/= zero \[length.of-back]\}))
 |
 | (val-of nonzero-length) =>
 datatype-cases (adapt theorem) {
 (stop i) =>
 assume A := (length stop i =/= zero)
 (!chain->
 \{(length stop i) = zero \[length.of-stop]\})
 A)
 | (back r) =>
 assume A := (length back r =/= zero)
 (!chain->
 \{true ==> (S length r =/= zero) \[N.S-not-zero]\}
 \{length of-back\})
 |
 }
define proofs :=

method (theorem adapt)
let {
\{get prove chain chain-> chain<-\} := (proof-tools adapt theory)}

match theorem {
(val-of range-expand) =>
pick-any i:(It 'X 'S) r:(Range 'X 'S)
{!chain
[(i in r)
===> (i = start back r | i in r) [alternate]
===> (i in (back r)) [of-back]]}

| (val-of range-reduce) =>
pick-any i r

let (RE := {!prove range-expand});
P := {!chain [(i in r) ==> (i in back r) [RE]]}
(!contra-pos P)
}

(add-theorems theory |{theorems := proofs}|)

} # close module in

} # close module Range