Memory theory

#--

domain (Memory S)

module Memory {
 domain (Change S)
 domain (Loc S)

 declare : (S) [(Memory S) (Change S)] -> (Memory S)
 declare \: (S, T) [(Memory S) T] -> T
 declare at: (S) [(Memory S) (Loc S)] -> S

 define [M M1 M2 M3 a b c x y] :=
 [?M:(Memory 'S) ?M1:(Memory 'S) ?M2:(Memory 'S)
 ?x:'S ?y:'S]

 declare equality :=
 (forall M1 M2 . (forall a . M1 at a = M2 at a) <=> M1 = M2)

 declare <:-: (S) [(Loc S) S] -> (Change S)

 module assign {
 define axioms :=
 (fun (((M \ a <- x) at b) =
 [x when (a = b)
 (M at b) when (a /= b)]))
 define [equal unequal] := axioms
 }

 define theory := (make-theory [] [equality assign.equal assign.unequal])

 #--

 module swap {
 define axioms :=
 (fun (((M \ (swap a b)) at c) =
 [(M at b) when (a = c)
 (M at a) when (b = c)
 (M at c) when (a /= c & b /= c)]))
 define [equal1 equal2 unequal] := axioms
 (add-axioms theory axioms)
 }

 #--

 # Theorems:

 define Double-assign :=
 (forall b M a x y . ((M \ a <- x) \ a <- y) at b = (M \ a <- y) at b)
 define Direct-double-assign :=
 (forall M a x y . (M \ a <- x) \ a <- y = M \ a <- y)
 define Self-assign :=
 (forall M a b . (M \ a <- M at a) at b = M at b)
 define Direct-self-assign := (forall M a . M \ a <- M at a = M)
 define Double-swap :=
 (forall c M a b .
 (M \ (swap a b)) \ (swap b a)) at c = M at c)
 define Direct-double-swap :=
 (forall M a b . (M \ (swap a b)) \ (swap b a) = M)
 define theorems := [Double-assign Direct-double-assign Self-assign
 Direct-self-assign Double-swap Direct-double-swap]
define proofs :=

method (theorem adapt)
let \{get prove chain-> chain<-> \} := (proof-tools adapt theory);
(at \< swap \) := (adapt [a [\< swap])

match theorem {

(val-of Double-assign) =>
pick-any b:(Loc 'S) M:(Memory 'S) a:(Loc 'S) x: 'S y: 'S
\{two-cases\}
assume (a = b)
\{chain \[((M \ a <- x) \ a <- y) at b \] \}
<= \((M \ a <- x) \ a <- y) at a \[[a = b]]
--> y \[assign.equal\]
<= \((M \ a <- y) at a \) \[assign.equal]\n--> \((M \ a <- y) at b \) \[[a = b]]\)

assume (a /= b)
\{chain \[((M \ a <- x) \ a <- y) at b \] \}
<= \((M \ a <- x) \ a <- y) at b \[assign.unequal]\n--> \((M \ a <- y) at a \) \[assign.unequal]\n--> \((M \ a <- y) at b \) \[assign.unequal]\]

(val-of Direct-double-assign) =>
pick-any M:(Memory 'S) i:(Loc 'S) x: 'S y: 'S
\{two-cases\}
assume (a = b)
\{!prove Double-assign\}

A := pick-any a:(Loc 'S)
\{\[[M \ i <- x] \ i <- y\] at a\}
--> \((M \ i <- y) at a \) \[DA]\)
\{!chain-\}
\[[A \<==\ (M \ i <- x) \ i <- y = M \ i <- y\] \[equality\]\]

(val-of Self-assign) =>
pick-any M:(Memory 'S) a:(Loc 'S) b:(Loc 'S)
\{goal := ((M \ a <- (M at a)) at b = M at b)\}
\{two-cases\}
assume (a = b)
\{!prove Self-assign\}
A := pick-any a:(Loc 'S)
\{\[[M \ i <- (M at i)]\] at a\}
--> \((M \ at a) \) \[SA]\)
\{!chain-\}
\[[A \<==\ ((M \ i <- (M at i)) = M) \[equality\]\]

(val-of Direct-self-assign) =>
pick-any M:(Memory 'S) i:(Loc 'S)
\{\prove Self-assign\}
\{!prove Self-assign\}
A := pick-any a:(Loc 'S)
\{\[[M \ i <- (M at i)]\] at a\}
--> \((M \ at a) \) \[SA]\)
\{!chain-\}
\[[A \<==\ ((M \ i <- (M at i)) = M) \[equality\]\]

(val-of Double-swap) =>
pick-any c:(Loc 'S) M:(Memory 'S) a:(Loc 'S) b:(Loc 'S)
\{three-cases\}
assume (a = c)
\{\prove Double-swap\}

A := pick-any a:(Loc 'S)
\{\prove Double-swap\}
A := pick-any a:(Loc 'S)
\{\prove Double-swap\}

assume (b = c)
\{\prove Double-swap\}

A := pick-any a:(Loc 'S)
\{\prove Double-swap\}

assume (a /= c & b /= c)
\{\prove Double-swap\}

A := pick-any a:(Loc 'S)
\{\prove Double-swap\}

assume (b = c)
\{\prove Double-swap\}

A := pick-any a:(Loc 'S)
\{\prove Double-swap\}

assume (a /= c & b /= c)
\{\prove Double-swap\}

A := pick-any a:(Loc 'S)
\{\prove Double-swap\}
138 -- (M at c) [DS])}
139 (!chain-> [A => ((M \ (swap a b)) \ (swap a b)) = M]
140 [equality]])
141
142 {add-theorems theory |[theorems := proofs]|}
143
144 } # Memory