Transitive Closure

```plaintext
load "order"
load "nat-plus"

module Transitive-Closure {
    open Irreflexive
    open Strict-Partial-Order
    overload + N.+
    declare R+, R*: (S) [S S] -> Boolean
    declare R** : (S) [N S S] -> Boolean
    define R+-zero :=
        (forall x y . (R** zero x y) <=> x = y)
    define R**-nonzero :=
        (forall x n y . (R** (S n) x y) <=> (exists z . (R** n x z) & z R y))
    define R+-definition :=
        (forall x y . x R+ y <=> (exists n . (R** (S n) x y)))
    define R*-definition :=
        (forall x y . x R* y <=> (exists n . (R** n x y)))
    define theory :=
        (make-theory
            [Irreflexive.theory
                (adapt-theory Strict-Partial-Order.theory |{R := R+}|)
            ][R**-zero R**-nonzero R+-definition R*-definition])
    define R**-sum :=
        (forall n m y z . (R** m x y) & (R** n y z) ==> (R** (m + n) x z))
    define RR+-inclusion :=
        (forall x y . x R y ==> x R+ y)
    define R+R*-inclusion :=
        (forall x y . x R+ y ==> x R* y)
    define R+-lemma :=
        (forall x y . x R+ y <==> x R y | (exists y' . x R+ y' & y' R y))
    define R*-lemma :=
        (forall x y . x R* y <==> x = y | x R+ y)
    define R*-Reflexive :=
        (forall x . x R* x)
    define TC-Transitivity :=
        (forall x y z . x R+ y & y R z ==> x R+ z)
    define TC-Transitivity1 :=
        (forall x y z . x R+ y & y R z ==> x R+ z)
    define TC-Transitivity2 :=
        (forall x y z . x R y & y R z ==> x R+ z)
    define TC-Transitivity3 :=
        (forall x y z . x R y & y R z ==> x R+ z)
    define theorems := [R**-sum TC-Transitivity RR+-inclusion R+R*-inclusion
            R+-lemma R*-lemma R*->Reflexive TC-Transitivity1
            TC-Transitivity2 TC-Transitivity3]
    define proofs :=
        method (theorem adapt)
            let {[get prove chain chain-> chain<->] := (proof-tools adapt theory);
                [R R+ R* R**] := (adapt [R R+ R* R**])}
        match theorem {
            (val-of R**-sum) =>
                by-induction (adapt theorem) {
                    zero =>
                        pick-any m x y z
                        let {A1 := (R** m x y);
                            A2 := (R** zero y z)}
                        assume (A1 & A2)
                        let {B := (!chain-> [A2 ==> (y = z) [R**-zero]])}
                        (!chain->
                            ![chain->
                                [A1 ==> (R** m x z) [B]]
                                (forall m n) =>
                                    ([n m] =>
                                        let {ind-hyp := (forall ?m ?x ?y ?z .
                                            (R** m z y) & (R** n y z) => (R** (m + n) y z)))))
                    }
                }
```
(R** ?m ?x ?y) & (R** n ?y ?z) =>
(R** (?m + n) ?x ?z))

pick-any m x y z
let (A1 := (R** m x y));
A2 := (R** (S n) y z)
assume (A1 & A2)
let (B := {!chain->
[A2 => (exists ?y' . (R** n y ?y') & ?y' R z)
[R**-nonzero])});

pick-witness y' for B
let (B-w1 := (R** n y y');
B-w2 := (y' R z))
(!chain->
[(A1 & B-w1)
===> (R** (m + n) x y') [ind-hyp]
===> ((R** (m + n) x y') & B-w2) [augment]
===> (exists ?y' . (R** (m + n) x ?y') & ?y' R z)
[existence]
===> (R** (S (m + n)) x z) [R**-nonzero]
===> (R** (m + (S n)) x z) [N.Plus.right-nonzero])
}

| (val-of R->Reflexive) =>
let (sort := (sort-of (first (qvars-of (adapt theorem)))));
pick-any x:sort
(!chain->
[(x = x)
===> (R** zero x x) [R**-zero]
===> (exists m . (R** (S m) x x)) [existence]
===> (x R* x) [R *-definition]]
)

| (val-of TC-Transitivity) =>
pick-any x y z
let (A1 := (x R+ y);
A2 := (y R+ z))
assume (A1 & A2)
let (B1 := {!chain->
[A1 => (exists m . (R** (S m) x y))
[R+-definition]]};
B2 := {!chain->
[A2 => (exists n . (R** (S ?n) y z))
[R+-definition]]});
... := (!prove R**-sum))
pick-witness m for B1 B1-w
pick-witness n for B2 B2-w
(!chain->
[(B1-w & B2-w)
===> (R** ((S m) + (S n)) x z) [R**-sum]
===> (R** (S (m + (S n))) x z) [N.Plus.left-nonzero]
===> (exists ?k . (R** (S ?k) x z)) [existence]
===> (x R+ z) [R+-definition]]
}

| (val-of RR+-inclusion) =>
pick-any x y
(!chain)
[(x R y)
===> (x = x & x R y) [augment]
===> ((R** zero x x) & x R y) [R**-zero]
===> (exists ?x' . (R** zero x ?x') & ?x' R y) [existence]
===> (R** (S zero) x y) [R**-nonzero]
===> (exists ?k . (R** (S ?k) x y)) [existence]
===> (x R+ y) [R+-definition]]
}

| (val-of R+-lemma) =>
pick-any x y
(!equiv
assume A := (x R+ y)
let (B := {!chain->
[A => (exists ?k . (R** (S ?k) x y)) [R+-definition]]});
pick-witness k for B B-w
let (C := {!chain->
[B-w => (exists ?x' . (R** k x ?x') & ?x' R y)
[R**-nonzero])});
pick-witness x' for C C-w
(!two-cases
 assume D := (k = zero)
 let (E := (!chain->
 [C-w] => ((R** zero x x') & x' R y) [D]
 =>> (R** zero x x') [left-and]
 =>> (x = x') [R**-zero])))
 (!chain->
 [C-w] => (x' R y) [right-and]
 =>> (x R y) [(x = x')] =>> (x R y | (exists ?y . x R+ ?y & ?y R y))
 [alternate]))
 assume D := (k /= zero)
 let (E := (!chain->
 [D] => (exists ?k' . k = (S ?k')) [N.nonzero-S])))
 pick-witness k' for E E-w
 let (F := (!chain->
 [C-w] => (x' R y) [right-and]
 =>> (exists ?k . (R** (S ?k) x' y)) [existence]
 =>> (x R+ x') [R+-definition]
 =>> (x R+ x' & F) [augment]
 =>> (exists ?k . (R** (S ?k) x y)) [existence]
 =>> (x R y | (exists ?x . x R+ ?x & ?x R y)) [alternate])))
 assume A := (x R y | (exists ?y' . x R+ ?y' & ?y' R y))
 let (RRI := (!prove RR+-inclusion))
 (!cases A
 (!chain [(x R y) =>> (x R y) RRI])
 assume B := (exists ?y' . x R+ ?y' & ?y' R y)
 pick-witness y' for B B-w
 let (C :=
 (!chain->
 [C-w] => (R** (S k') x x') [left-and]
 =>> (exists ?k' . (R** (S ?k') x x')) [existence]
 =>> (x R+ x') [R+-definition]
 =>> (x R+ x' & F) [augment]
 =>> (exists ?k' . (R** (S ?k') x y)) [existence]
 =>> (x R y | (exists ?x . x R+ ?x & ?x R y)) [alternate])))
 | (val-of R*-lemma) =>
 let (sort := (sort-of (first (qvars-of (adapt theorem))))
 pick-any x:sort y:sort
 (!equiv
 assume A := (x R+ y)
 let (B := (!chain->
 [A] => (exists ?n . (R** ?n x y)) [R+-definition])))
 pick-witness n for B B-w
 (!two-cases
 assume C1 := (n = zero)
 (!chain->
 [C-w] => (R** zero x y) [C1]
 =>> (x = y) [R**-zero]
 =>> (x = y | x R+ y) [alternate]))
 assume C2 := (n /= zero)
 let (D := (!chain->
 [C2] => (exists ?m . (R** ?m x y)) [R+-definition]))
 pick-witness m for D D-w
 (!chain->
 [D-w] => (R** (S m) x y) [D-w]
 =>> (exists ?m . (R** (S ?m) x y)) [existence]
 =>> (x R y) [R+-definition]
 =>> (x = y | x R+ y) [alternate])))
 assume A := (x = y | x R+ y)
assume A1 := (x = y)
(!chain->
 [A1 ==> (\exists n . \(\Rightarrow\ n x y\)) \{existence\}
 ==> (x R* y) \{R*-definition\}]))

assume A2 := (x R+ y)

let (B :=
 (!chain->
 [A2 ==> (\exists n . \(\Rightarrow\ n x y\)) \{existence\}
 ==> (x R+ z) \{R+-transitive\}]))

pick-witness n for B B-w
(!chain->
 [B-w ==> (\exists k . \(\Rightarrow\ k x y\)) \{existence\}
 ==> (x R+ y) \{R+-definition\}]))

let \(\Rightarrow\) := (!prove \(\Rightarrow\)-lemma)

pick-any x y z
let \(\Rightarrow\) := (!prove \(\Rightarrow\)-transitive)

assume \(\Rightarrow\) := (!prove \(\Rightarrow\)+transitive)

let \(\Rightarrow\) := (!prove \(\Rightarrow\)-transitive)

assume \(\Rightarrow\) := (!prove \(\Rightarrow\)-transitive)

let \(\Rightarrow\) := (!prove \(\Rightarrow\)-transitive)

let \(\Rightarrow\) := (!prove \(\Rightarrow\)-transitive)

let \(\Rightarrow\) := (!prove \(\Rightarrow\)-transitive)
assume C2 := (x R+ y)
(!cases B2
 assume D1 := (y = z)
 (!chain->
 [C2 ==> (x R+ z) [D1]]
 ==> (x R+ z) [RRI]])
 assume D2 := (y R+ z)
 (!chain->
 [D2 ==> (C2 & D2) [augment]
 ==> (x = z | x R+ z) [alternate]
 ==> (x R+ z) [R+L]])})
{add-theorems theory |{theorems := proofs}|
} # close module Transitive-Closure