Abstract-level order concepts and theorems

Strict Partial Order

module Binary-Relation {
 declare R, R': (T) [T T] -> Boolean
 define [x y z] := [?x ?y ?z]
 define inverse-def := (forall x y . x R' y <==> y R x)
 define theory := (make-theory [] [inverse-def])
}

module Irreflexive {
 open Binary-Relation
 define irreflexive := (forall x . ~ x R x)
 define theory := (make-theory ['Binary-Relation'] [irreflexive])
 define inverse := (forall x y z . x R y & y R z ==> x R z)
 define proof :=
 method (theorem adapt)
 let {[get prove chain chain-> chain<-] := (proof-tools adapt theory);
 [R R'] := (adapt [R R'])}
 match theorem {
 (val-of inverse) =>
 pick-any x
 (!chain-> [true ==> (~ x R x) [irreflexive]
 ==> (~ x R' x) [inverse-def]])
 }
 (add-theorems theory [{inverse := proof}])
}

module Transitive {
 open Binary-Relation
 define transitive := (forall x y z . x R y & y R z ==> x R z)
 define theory := (make-theory ['Binary-Relation'] [transitive])
 define inverse := (forall x y z . x R y & y R z ==> x R z)
 define proof :=
 method (theorem adapt)
 let {[get prove chain chain-> chain<-] := (proof-tools adapt theory);
 [R R'] := (adapt [R R'])}
 match theorem {
 (val-of inverse) =>
 pick-any x y z
 (!chain [x R' y & y R' z]
 ==> [y R x & z R y] [inverse-def]
 ==> [z R y & y R x] [and-comm]
 ==> [z R x] [transitive]
 ==> [x R' z] [inverse-def]])
 }
 (add-theorems theory [{inverse := proof}])
}

module Strict-Partial-Order {
 open Irreflexive, Transitive
 define theory := (make-theory ['Irreflexive 'Transitive'] [])
 define asymmetric := (forall x y . x R y ==> ~ y R x)
 define implies-not-equal := (forall x y . x R y ==> x /= y)
 define proofs :=
 method (theorem adapt)
 let {[get prove chain chain-> chain<-] := (proof-tools adapt theory);
 [R R'] := (adapt [R R'])}
 match theorem {
 (val-of asymmetric) =>
 pick-any x y
 assume (x R y)
 (!by-contradiction (~ y R x))
assume (y R x)
!absurd
!chain-> [(y R x) [augment]
 ==> (x R x) [transitive]]
| (val-of implies-not-equal) =>
pick-any x y
assume (x R y)
||by-contradiction (x /= y)
assume (x = y)
let {xRx := (!chain-> [(x R y) [transitive]])
 -xRx := (!chain-> [true [irreflexive]])
}| (!absurd xRx -xRx)}
(add-theorems theory |{asymmetric implies-not-equal} := proofs|)
#
module Reflexive {
 open Binary-Relation
 define reflexive := (forall x . x R x)
 define theory := (make-theory ['Binary-Relation] [reflexive])
 define inverse := (forall x y . x R y & y R x ==> x = y)
 define proof :=
 method (theorem adapt)
 let { [get prove chain chain-> chain<->] := (proof-tools adapt theory);
 [R R'] := (adapt [R R'])}
 match theorem {
 (val-of inverse) =>
pick-any x
 | (chain-> [true ==> (x R x) [reflexive]]
 ==> (x R' x) [inverse-def])
 (!absurd xRx -xRx)}
 (add-theorems theory |{inverse := proof}|)
 }
}
module Preorder {
 open Transitive, Reflexive
 define theory := (make-theory ['Transitive 'Reflexive] [])
}
#
module Antisymmetric {
 open Binary-Relation
 define antisymmetric := (forall x y . x R y & y R x ==> x = y)
 define theory := (make-theory ['Binary-Relation] [antisymmetric])
 define inverse := (forall x y . x R' y & y R' x ==> x = y)
 define proof :=
 method (theorem adapt)
 let { [get prove chain chain-> chain<->] := (proof-tools adapt theory);
 [R R'] := (adapt [R R'])}
 match theorem {
 (val-of inverse) =>
pick-any x y
 | (chain-> [(x R' y & y R' x)
 ==> (y R x & x R y) [inverse-def]]
 ==> (x R y & y R x) [and-comm]
 ==> (x = y) [antisymmetric])
 } (add-theorems theory |{inverse := proof}|)
 }
module Partial-Order {
 open Preorder, Antisymmetric
 define theory := (make-theory ['Preorder 'Antisymmetric] [])
}

SPO: Strict Partial Order with < instead of R, > instead of R'
module SPO {
 declare <, >: (T) [T T] -> Boolean
 define sm := |{Binary-Relation.R := <, Binary-Relation.R' := >}| |
 define renaming := (renaming sm)
 define theory := (adapt-theory 'Strict-Partial-Order sm)
}

PO: Partial Order with <= instead of R, >= instead of R'
module PO {
 declare <=, >=: (T) [T T] -> Boolean
 define sm := |{Binary-Relation.R := <=, Binary-Relation.R' := =>}| |
 define renaming := (renaming sm)
 define theory := (adapt-theory 'Partial-Order sm)
}

Show that if we start with SPO.theory and add a definition of <=, we
can derive the axioms of PO.theory as theorems of SPO.theory.
module PO-from-SPO {
 define \[x y z\] := [?x ?y ?z]
 define \[< > <= >=\] := [SPO.< SPO.> PO.<= PO.>=]
 define <=-definition := (forall x y . x <= y <==> x < y | x = y)
 define >=-definition := (forall x y . x >= y <==> x > y | x = y)
 (add-axioms 'SPO [<=-definition >=-definition])
 define implied-by-less := (forall x y . x <= y ==> x <= y)
 define implied-by-equal := (forall x y . x = y ==> x <= y)
 define implies-not-reverse := (forall x y . x <= y ==> ~ y < x)
 define PO-inverse := (forall x y . x <= y ==> y <= x)
 define PO-reflexive := (forall x . x <= x)
 define PO-transitive := (forall x y z . x <= y & y <= z ==> x <= z)
 define PO-antisymmetric := (forall x y . x <= y & y <= x ==> x = y)
 define theorems := [<=-definition implied-by-less implied-by-equal
 implies-not-reverse PO-inverse PO-reflexive
 PO-antisymmetric PO-transitive]
 define proofs :=
 method (theorem adapt)
 let {adapt := (o adapt SPO.renaming);
 [get prove chain chain<-] := (proof-tools adapt SPO.theory);
 [< > <= >] := (adapt [< > <= >]);
 inverse-def := Strict-Partial-Order.inverse-def;
 irreflexive := Strict-Partial-Order.irreflexive;
 transitive := Strict-Partial-Order.transitive;
 asymmetric := ([prove Strict-Partial-Order.asymmetric])}
 match theorem {
 (val-of implied-by-less) =>
 pick-any x y
 (\(chain \{ (x < y) ==> (x < y | x = y) \}) alternate
 => (x <= y) [<=-definition])
 (val-of implied-by-equal) =>
 pick-any x y
\begin{verbatim}
/*chain [(x = y) ==> (x < y | x = y) [alternate]
 ==> (x <= y) [<=-definition]]

| (val-of implies-not-reverse) =>

pick-any x y
 assume A := (x <= y)
 let \{B := \{!chain- \[A \Rightarrow (x < y | x = y) [\leq-definition]\]\}\}
 \{cases B
 \{!chain [(x < y) \Rightarrow (y < x) [asymmetric]]
 assume \(x = y\)
 \{by-contradiction (y < x)
 assume \(y < x\)
 let \(is := \{!chain- \[(y < x) \Rightarrow (y < x) [\sim-\text{asymmetric}]\]\}\)
 is-not := \{!chain-> \{true \Rightarrow (\sim y < y) [\text{irreflexive}]\]\}\)
 (!absurd is is-not))
 | (val-of PO-inverse) =>
 pick-any x y
 \{!chain \[(x >= y) \iff (x > y | x = y) [\geq-definition]
 \iff (y < x | y = x) [\text{inverse-def sym]}
 \iff (y <= x) [\leq-definition]\}\}
 | (val-of PO-reflexive) =>
 pick-any x
 \{!chain \[(x = x) \Rightarrow (x <= x) [\text{IBE}]\]\}
 | (val-of PO-antisymmetric) => (!force (adapt theorem))
 | (val-of PO-transitive) => (!force (adapt theorem))
 }
 (add-theorems SPO.theory \{[theorems := proofs]\})

}|}

extend-module PO-from-SPO {

define proofs :=
 method (theorem adapt)
 let \{adapt := (o adapt PO.renaming);
 \{get prove chain chain-> chain<\} := (proof-tools adapt SPO.theory);
 \(< \leq \} := (adapt [< \leq \});
 \text{irreflexive} := \text{Strict-Partial-Order.irreflexive};
 \text{transitive} := \text{Strict-Partial-Order.transitive};
 \text{asymmetric} := (!prove \text{Strict-Partial-Order.asymmetric})

match theorem {
 \{val-of PO-antisymmetric\} =>
 pick-any x y
 assume \(x <= y \& y <= x\)
 let \{disj1 := \{!chain- \[(x <= y) \Rightarrow (x < y | x = y) [\leq-definition]\]\}\}
 disj2 := \{!chain- \[(y <= x) \Rightarrow (y < x | y = x) [\leq-definition]\]\}\)
 \{cases disj1
 assume \(x < y\)
 \{cases disj2
 assume \(y < x\)
 \{from-complements \(x = y\)
 \(y < x\)
 \{chain- \[(x < y) \Rightarrow (\sim y < x) [\text{asymmetric}]\]\}\)
 assume \(y = x\)
 \{sym \(y = x\)\}
 assume \(x = y\)
 \{claim \(x = y\)\}
 | (val-of PO-transitive) =>
 pick-any x y z
 assume \(x <= y \& y <= z\)
 let \{disj1 := \{!chain- \[(x <= y) \Rightarrow (x < y | x = y) [\leq-definition]\]\}\)
 disj2 := \{!chain- \[(y <= z) \Rightarrow (y < z | y = z) [\leq-definition]\]\}\)
 \text{by-less} := (!prove \text{implied-by-less});
 \text{by-equal} := (!prove \text{implied-by-equal})
 \{cases disj1
\end{verbatim}
assume (x < y)
 (!cases disj2
 assume i := (y < z)
 (!chain->
 [i ===> (x < y & y < z) [augment]
 ===> (x < z) [transitive]
 ===> (x <= z) [by-less]])
 assume ii := (y = z)
 (!chain->
 [(x < y) ===> (x < z) [ii]
 ===> (x <= z) [by-less]])
)
assume (x = y)
 (!cases disj2
 assume i := (y < z)
 (!chain->
 [i ==> (x < z) [(x = y)]
 ===> (x <= z) [by-less]])
 assume ii := (y = z)
 (!chain->
 [x --> y [i] --> z [ii]
 ===> (x <= z) [by-equal]])
)
}

{add-theorems SPO.theory |{[PO-antisymmetric PO-transitive] := proofs}}}

...
SWO: Strict Weak Order, a refinement of SPO

extend-module SPO {
declare E: (T) [T T] -> Boolean [100]
define E-definition := (forall x y . x E y <=> ~ x < y & ~ y < x)
 (add-axioms theory [E-definition])
}

module SWO {
 open SPO
 define E-transitive := (forall x y z . x E y & y E z ==> x E z)
 define theory := (make-theory [SPO] [E-transitive])
 define E-reflexive := (forall x . x E x)
 define E-symmetric := (forall x y . x E y ==> y E x)
 define <E-transitive-1 := (forall x y z . x < y & y E z ==> x < z)
 define <E-transitive-2 := (forall x y z . x < y & x E z ==> z < y)
 define not-<property := (forall x y . ~ x < y ==> y < x | y E x)
 define <E-transitive-not-1 := (forall x y z . x < y & ~ z < y ==> x < z)
 define <E-transitive-not-2 := (forall x y z . x < y & ~ x < z ==> z < y)
 define <E-transitive-not-3 := (forall x y z . ~ y < x & y < z ==> x < z)
 define not-<is-transitive :=
 (forall x y z . ~ x < y & ~ y < z ==> ~ x < z)
 define <E-theorems :=
 [E-reflexive E-symmetric <E-transitive-1 <E-transitive-2
 not-<property <E-transitive-not-1 <E-transitive-not-2
 <E-transitive-not-3 not-<is-transitive]
 define ren := (get-renaming 'SPO)
 define <E-proofs :=
 method (theorem adapt)
 let [adapt := (o adapt SPO.renaming);
 (get prove chain chain-> chain<-) := (proof-tools adapt theory);
 E := lambda (x y) (adapt (x E y));
 < := lambda (x y) (adapt (x < y));
 irreflexive := Strict-Partial-Order.irreflexive;
 transitive := Strict-Partial-Order.transitive;
 asymmetric := Strict-Partial-Order.asymmetric]
 match theorem {
 (val-of E-reflexive) =>
 pick-any x
 }
\begin{verbatim}
(!chain-> [true
 => (\sim x < x) [irreflexive]
 => (\sim x < x & \sim x < x) [augment]
 => (x <E x) [E-definition]]
| (val-of E-symmetric) =>
 pick-any x y
 assume (x E y)
 (!chain-> [(x E y)
 => (\sim x < y & \sim y < x) [E-definition]
 => (\sim y < x & \sim x < y) [and-comm]
 => (y <E x) [E-definition]])
 | _ => (!force (adapt theorem))
}

(add-theorems theory |{<-E-theorems := <-E-proofs}|
}
close module SWO

extend-module SWO {
 declare <E: (T) [T T] -> Boolean
 define <E-definition := (forall x y . x <E y <==>
 \sim y < x)
 (add-axioms theory [<E-definition])
}

Show that <E is a preorder:

extend-module SWO {
 define <E-reflexive := (forall x . x <E x)
 define <E-transitive := (forall x y z . x <E y & y <E z ==> x <E z)
 define theorems := [<E-reflexive <E-transitive]

 define proofs :=
 method (theorem adapt)
 let (adapt := (o adapt SWO.renaming);
 [get prove chain chain-> chain<-] := (proof-tools adapt theory);
 < := lambda (x y) (adapt (x < y));
 <E := lambda (x y) (adapt (x <E y));
 irreflexive := Strict-Partial-Order.irreflexive;
 transitive := Strict-Partial-Order.transitive)
 match theorem {
 (val-of <E-reflexive) =>
 pick-any x
 (!chain-> [true => (\sim x < x) [irreflexive]
 => (x <E x) [E-definition]]
| (val-of <E-transitive) =>
 let (transitive := (!prove not<-is-transitive))
 pick-any x y z
 (!chain [(x <E y & y <E z)
 => (\sim y < x & \sim z < y) [E-definition]
 => (\sim z < x) [transitive]
 => (x <E z) [E-definition]])
 }

 (add-theorems theory |{theorems := proofs}|
}
close module SWO

#..
STO: Strict Total Order theory

module STO {
 open SWO

 define strict-trichotomy := (forall x y . \sim y < x & \sim x < y => x = y)
 define theory := (make-theory [SWO] [strict-trichotomy])

 define E-iff-equal := (forall x y . x E y <=> x = y)
}
close module STO

extend-module STO {
\end{verbatim}
define proof :=
method (theorem adapt)
let \{adapt := \langle o adapt SPO.renaming \rangle ; \}
\{get proof chain chain-> chain<-> \} := \langle proof-tools adapt theory \rangle ;
E := \lambda (x \ y) \langle adapt \langle x \ E \ y \rangle \rangle ;
< := \lambda (x \ y) \langle adapt \langle x < y \rangle \rangle
match theorem |
\{\val-of E-iff-equal \} =>
pick-any x y
(!equiv

(!chain [(x E y)]

=> \langle \sim x < y \& \sim y < x \rangle) \ [E-definition]

=> \langle x = y \rangle \ [strict-trichotomy]]

assume \langle x = y \rangle

(!chain-> [true

=> \langle \sim x < x \rangle) \ [Strict-Partial-Order.irreflexive]

=> \langle \sim x < x \& \sim x < x \rangle) \ [augment]

=> \langle x E x \rangle \ [E-definition]

=> \langle x E y \rangle \ [(x = y)]\}

\}

(add-theorems theory |{E-iff-equal := proof}|)

| # close module STO