load "integral-domain.ath"
load "integer-times.ath"

open Z

define Integer-Ring :=
 (renaming [Commutative-Ring.+ + Commutative-Ring. * *
 Commutative-Ring.<0> zero Commutative-Ring.U- negate
 Commutative-Ring.- -])

(print-instance-check Integer-Ring Commutative-Ring.Theory)

define Integer-Ring-1 :=
 (renaming [Commutative-Ring.+ + Commutative-Ring. * *
 x`Commutative-Ring.<0> zero Commutative-Ring.U- negate
 Commutative-Ring.- -
 Commutative-Ring-With-Identity.<1> one])

(print-instance-check Integer-Ring-1 Commutative-Ring-With-Identity.Theory)

assert (theory-axioms Commutative-Ring-With-Identity.Theory)

assert by-instance-check Group.Left-Inverse Integer-Ring-1 Commutative-Ring-With-Identity.Theory)

assert Group.Unique-Negation Commutative-Ring-With-Identity.Theory)

assert Group.Unique-Negation Integer-Ring-1 Commutative-Ring-With-Identity.Theory)

##

define ZID :=
 (renaming [Commutative-Ring.+ + Commutative-Ring. * *
 Commutative-Ring.<0> zero Commutative-Ring.U- negate
 Commutative-Ring.- - Commutative-Ring-With-Identity.<1> one])

(print-instance-check ZID Integral-Domain.Theory)