Test group concepts and theorems

load "group"

module Test {
 open Group
 define Group0 := no-renaming
 assert (Group0 (theory-axioms 'Group))

 # (set-debug-mode "rewriting")
 (test-proofs [Group.left-inverse Group.double-negation
 Group.unique-negation Group.neg-plus] 'Group)

 # Create some dummy symbols to plug into Group theory
 declare pluss: (T) [T T] -> T
 declare negs: (T) [T] -> T
 declare zeros: (T) [] -> T

 # Show that the proofs work with this different set of symbols.
 define Group1 := (renaming |{Group.+ := pluss, Group.U- := negs, Group.<0> := zeros}|
 assert (Group1 (theory-axioms Group))

 # This time, don’t prove ‘Left-Inverse before testing ‘Double-Negation;
 # it should thus be proved on the fly.
 (!prove-property double-negation Group1 Group.theory)
 (!prove-property unique-negation Group1 Group.theory)
 (!prove-property neg-plus Group1 Group.theory)

 # Although it was proved during the proof of Double-Negation, it wasn’t
 # left in the assumption base, so !property has to reprove it.
 (!prove-property left-inverse Group1 Group.theory)

 declare plus': (T) [T T] -> T
 declare neg': (T) [T] -> T
 declare zero': (T) [] -> T
 declare minus': (T) [T T] -> T
 define Abelian-Group0 := (renaming |{Group.+ := plus', Group.U- := neg',
 Group.<0> := zero', Group.- := minus'}|)
 assert (Abelian-Group0 (theory-axioms Abelian-Group.theory))

 (!prove-property left-inverse Abelian-Group0 Abelian-Group.theory)
 (!prove-property double-negation Abelian-Group0 Abelian-Group.theory)
 (!prove-property unique-negation Abelian-Group0 Abelian-Group.theory)
define MG0 := no-renaming
assert (MG0 (theory-axioms MG.theory))
(!prove-property left-inverse MG0 MG.theory)
(!prove-property double-negation MG0 MG.theory)
(!prove-property unique-negation MG0 MG.theory)
(!prove-property neg-plus MG0 MG.theory)

declare times1: (T) [T T] -> T
declare one1: (T) [] -> T
declare inv1: (T) [T] -> T
declare div1: (T) [T T] -> T
define MG1 :=
 (renaming |{MSG.* := times1, MM.<1> := one1, MG.inv := inv1, MG./ := div1}|)
assert (MG1 (theory-axioms MG.theory))
(!prove-property left-inverse MG1 MG.theory)
(!prove-property double-negation MG1 MG.theory)
(!prove-property unique-negation MG1 MG.theory)
(!prove-property neg-plus MG1 MG.theory)
#
Test