Abstract algebraic theories: Semigroup, Identity, Monoid, Group

module Semigroup {
 declare +: (S) [S S] -> S [200]
 define associative := (forall x y z . (x + y) + z = x + (y + z))
 define theory := (make-theory [] [associative])
}

module Identity {
 open Semigroup
 declare <0>: (S) [] -> S
 define left-identity := (forall x . <0> + x = x)
 define right-identity := (forall x . x + <0> = x)
 define theory := (make-theory [] [left-identity right-identity])
}

module Monoid {
 open Identity
 define theory := (make-theory [Semigroup Identity] [])
}

module Group {
 open Monoid
 declare U-: (S) [S] -> S
 declare -: (S) [S S] -> S
 define right-inverse := (forall x . x + U- x = <0>)
 define minus-definition := (forall x y . x - y = x + U- y)
 define theory := (make-theory [Monoid] [right-inverse minus-definition])
}

extend-module Group {
 define left-inverse := (forall x . (U- x) + x = <0>)
 define double-negation := (forall x . U- U- x = x)
 define unique-negation := (forall x y . x + y = <0> ==> U- x = y)
 define neg-plus := (forall x y . U- (x + y) = (U- y) + (U- x))
 define left-inverse-proof :=
 method (theorem adapt)
 let {{ _ _ chain _ _ } := (proof-tools adapt theory); [+ U- <0>]} := (adapt [+ U- <0>])
 conclude (adapt theorem)
 pick-any x
 (chain
 [(U- x) + x]
 <- (((U- x) + x) + <0>)
 [right-identity]
 ---> ((U- x) + (x + <0>))
 [associative]
 <- (U- x) + (x + ((U- x) + U- U- x))
 [right-inverse]
 ---> ((U- x) + U- U- x)
 [associative]
 <- (((U- x) + <0>) + U- U- x)
 [associative]
 ---> ((U- x) + U- U- x)
 [right-identity]
 ---> <0>
 [right-inverse])
 (add-theorems 'Group |{ left-inverse := left-inverse-proof |})
}

extend-module Group {
 define proofs :=
 method (theorem adapt)
let { [get prove chain chain-> chain<->] := (proof-tools adapt theory); [+ U- <0>] := (adapt [+ U- <0>]) }

match theorem {
(val-of double-negation) =>
 conclude [adapt theorem]
 pick-any x:(sort-of <0>)
 { [left-identity] [right-inverse] [associative] [right-inverse] [right-identity] } <- (x + (U- x))<-> (x + (U- x))
 pick-any x:(sort-of <0>)
 !chain [{LI := (!prove left-inverse)}]
| (val-of unique-negation) =>
 conclude [adapt theorem]
 pick-any x y:(sort-of <0>)
 let { LI := (!prove unique-negation) }
 assume A := (x + y = <0>)
 { [left-identity] [A] [associative] [left-identity] [left-identity] } <- ((U- x) + x) <- ((U- x) + x) + y
 --> (<0> + y)
 --> (x + (<0> + (U- x)))
 --> (<0>)
 --> <0>
 --> <0>
 {[A == (U- x) + y = (U- x) + (U- x)] [UN]}

(add-theorems theory |{left-inverse := left-inverse-proof}|)

module Abelian-Monoid {
 open Monoid
 define commutative := (forall x y . x + y = y + x)
 define theory := (make-theory [Monoid] [commutative])
}

module Abelian-Group {
 open Group
 define commutative := (forall x y . x + y = y + x)
 define theory := (make-theory [Group] [commutative])
}

Commutativity allows a shorter proof for Left-Inverse and
a more natural statement of Neg-Plus:

extend-module Abelian-Group {
 define left-inverse-proof :=
 method (theorem adapt)
 let { [get prove chain chain-> chain<-] := (proof-tools adapt theory); [+ U- <0>] := (adapt [+ U- <0>]) }
 conclude [adapt theorem]
 pick-any x
 { [associative] [right-inverse] [right-inverse] [right-identity] } <- ((U- x) + x)
 pick-any x y
 let { UN := (!prove unique-negation); }
 assume A := (x + y = <0>)
 { [left-identity] [A] [left-identity] [left-identity] } <- ((x + y) + (U- x)) <- ((U- x) + (U- x))
 --> (x + (<0> + (U- x)))
 --> (x + (U- x))
 --> <0>
 {[A == (U- x) + y = (U- x) + (U- x)] [UN]}

 (add-theorems theory |{left-inverse := left-inverse-proof}|)

 define neg-plus := (forall x y . U- (x + y) = (U- x) + (U- y))
define neg-plus-proof :=
 method (theorem adapt)
 let ((get prove chain chain-> chain<-) := (proof-tools adapt theory);
 [+ U- <0>] := (adapt [+ U- <0>]))
 conclude (adapt theorem)
 pick-any x y
 let {Group-version := (!prove-property Group.neg-plus
 adapt Group.theory)}
 (!chain {((U- (x + y))
 --> ((U- y) + (U- x)) [Group-version]
 --> ((U- x) + (U- y)) [commutative]})
 (add-theorems theory (add-theorems theory (neg-plus := neg-plus-proof)))
} # close module Abelian-Group

Multiplicative-Semigroup, Monoid, and Group theories
module MSG { # Multiplicative-Semigroup
 declare *: (S) [S S] -> S [300]
 define theory := (adapt-theory 'Semigroup [Semigroup.+ := *])
}

module MM { # Multiplicative-Monoid
 declare <1>: (S) [] -> S
 define theory := (adapt-theory 'Monoid [Semigroup.+ := MSG.*, Monoid.<0> := <1>])
}

module MAM { # Multiplicative-Abelian-Monoid
 open MM
 define theory := (adapt-theory 'Abelian-Monoid [Monoid.<0> := <1>])
}

module MG { # Multiplicative-Group
 declare inv: (T) [T] -> T
 declare /: (T) [T T] -> T
 define theory := (adapt-theory 'Group [Monoid.<0> := MM.<1>,
 Group.U- := inv, Group.- := /])
}