Theory of functions with axioms for defining application and composition, and
theorems about surjective, injective, and bijective properties.

module Function {
 domain (Fun Domain Codomain)
 declare at: (C, D) -> (Fun D C)
 declare identity: (D) -> (Fun D D)
 declare o: (D, C, B) -> (Fun B C)

 set-precedence o (plus 10 (get-precedence at))

 define [f g h x y] := [f g h x y]

 define compose-definition := (forall x. identity at x = x)

 define function-equality :=
 (forall f g. f = g <===> (forall x. f at x = g at x))

 define identity-definition := (forall x. identity at x = x)

 define compose-definition := (forall f g x. (f o g) at x = f at (g at x))

 define function-equality :=
 (forall f g . f = g <===> forall x . f at x = g at x)

 define theory :=
 (make-theory [] [identity-definition compose-definition function-equality])

 define associative := (forall f g h. (f o g) o h = f o (g o h))

 define left-identity := (forall f . identity o f = f)

 define right-identity := (forall f . f o identity = f)

 define Monoid-theorems := [associative right-identity left-identity]

 define proofs :=
 method (theorem adapt)
 let [{get prove chain chain-> chain<->} := (proof-tools adapt theory);
 [cd id] := [compose-definition identity-definition]]

 match theorem {
 | (val-of associative) =>
 pick-any f g h
 let {all-x := pick-any x
 ![chain
 [((f o g) o h at x)
 --> ((f o g) at h at x) [cd]
 --> (f at g at h at x) [cd]
 <-- (f at (g o h) at x) [cd]
 <-- ((f o (g o h)) at x) [cd]]])
 ![chain-> [all-x
 ==> ((f o g) o h = f o (g o h)) [function-equality]]]}

 | (val-of right-identity) =>
 pick-any f
 let {all-x := pick-any x
 ![chain
 [((f o identity) at x)
 --> (f at (identity at x)) [cd]
 --> (f at x) [id]]])
 ![chain-
 [all-x ==> (f o identity = f) [function-equality]]}

 | (val-of left-identity) =>
 pick-any f
 let {all-x := pick-any x
 ![chain
 [((identity o f) at x)
 --> (identity at (f at x)) [cd]
 --> (f at x) [id]]])
 ![chain-
 [all-x ==> (identity o f = f) [function-equality]]}

 }

 (add-theorems theory |{Monoid-theorems := proofs}|)
declare surjective, injective, bijective: (D, C) [(Fun D C)] -> Boolean

define surjective-definition :=
(forall f . surjective f <==> forall y . exists x . f at x = y)

define injective-definition :=
(forall f . injective f <==> forall x y . f at x = f at y ==> x = y)

define bijective-definition :=
(forall f . bijective f <==> surjective f & injective f)

(add-axioms theory [surjective-definition injective-definition
bijective-definition])

define identity-surjective := (surjective identity)

define identity-injective := (injective identity)

define identity-bijective := (bijective identity)

define compose-surjective-preserving :=
(forall f g . surjective f & surjective g ==> surjective f o g)

define compose-injective-preserving :=
(forall f g . injective f & injective g ==> injective f o g)

define compose-bijective-preserving :=
(forall f g . bijective f & bijective g ==> bijective f o g)

Inverse-theorems :=
[identity-surjective identity-injective identity-bijective
compose-surjective-preserving compose-injective-preserving
compose-bijective-preserving]

Proofs of first and fourth:

define proofs-1 :=
method (theorem adapt)
let {[get prove chain chain-> chain<-] := (proof-tools adapt theory);
[at identity o] := (adapt [at identity o]);
[cd id] := [compose-definition identity-definition]}
match theorem {
(val-of identity-surjective) =>
let [SDI := (!instance surjective-definition [identity]);
all-y :=
.pick-any y
(!chain->
[(identity at y) --> y [id]
eq> (exists x . identity at x = y) [existence]])
(!chain-> [all-y ==>
(surjective identity) [SDI]])
| (val-of compose-surjective-preserving) =>
pick-any f g
assume (surjective f & surjective g)
let {f-case :=
(!chain->
[(surjective f)
=>> (forall y .
exists x . f at x = y) [surjective-definition]]);

| g-case :=
(!chain->
[(surjective g)
=>> (forall y .
exists x . g at x = y) [surjective-definition]]);

\ all-y :=
pick-any y
let {f-case-y :=
(!chain->
true
==⇒ (exists y'. f at y' = y) [f-case])}

pick-witness y' for f-case-y
let [g-case-y'] := (!chain->

[true
==⇒ (exists x . g at x = y') [g-case]])

pick-witness x for g-case-y'
let [f-case'] := (!chain->

[(f o g at x)
==⇒ (f at g at x) [cd]
==⇒ (f at y') [g-case]
==⇒ y [(f at y' = y)]
==⇒ (exists x . f o g at x = y) [existence]])

(!chain-> [all-y
==⇒ (surjective f o g) [surjective-definition]])

(add-theorems theory |{[identity-surjective compose-surjective-preserving] := proofs-1}|)

define proofs :=
 method (theorem adapt)
 let [get prove chain chain-> chain<->] := (proof-tools adapt theory);
 [at identity o] := (adapt [at identity o]);
 [cd id] := [compose-definition identity-definition]
 match theorem {
 (val-of identity-injective) =>
 let [IDI := (!instance injective-definition [identity]);
 all-xx' :=
 pick-any x x'
 assume A := ((identity at x) = (identity at x'))
 (!chain
 [x <-- (identity at x) [id]
 --⇒ (identity at x') [A]
 --⇒ x' [id]])]
 (!chain-> [all-xx' ==> (injective identity) [IDI]])
 | (val-of identity-bijective) =>
 let [BDI := (!instance bijective-definition [identity]);
 s-and-i := (!both (!prove identity-surjective)
 (!prove identity-injective))]
 (!chain->
 [s-and-i ==> (bijective identity) [BDI]])
 }

(add-theorems theory |{[identity-injective identity-bijective] := proofs}|)

define proof :=
 method (theorem adapt)
 let [get prove chain chain-> chain<->] := (proof-tools adapt theory);
 [at identity o] := (adapt [at identity o]);
 [cd id] := [compose-definition identity-definition]
 match theorem {
 (val-of compose-injective-preserving) =>
 let [indef := injective-definition]
 pick-any f g
 assume [injective f & injective g]
 let [i-case := (!chain->
 [(injective f)
 ==⇒ (forall x x'. f at x = f at x'
 ==⇒ x = x') [indef]]);
 g-case := (!chain->
 [(injective g)
 ==⇒ (forall x x'. g at x = g at x'
 ==⇒ x = x') [indef]]);
all-xx' :=

pick-any x x'

assume A := ((f o g) at x = (f o g) at x')

let {B := conclude (f at (g at x) =

f at (g at x'))

(!chain

[(f at (g at x))

<-- ((f o g) at x) [cd]

--> ((f o g) at x') [A]

--> (f at (g at x')) [cd]])}

(!chain->

[B ==> (g at x = g at x') [f-case]

=> (x = x') [g-case]])}

(!chain->

[all-xx' ==> (injective f o g) [indef]])

}

(define proof :=

method (theorem adapt)

let [{get prove chain chain-> chain<-} := (proof-tools adapt theory);

[at identity o] := (adapt [at identity o]);

[cd id] := [compose-definition identity-definition]}

match theorem {

(val-of compose-bijective-preserving) =>

pick-any f:(Fun 'S 'T) g:(Fun 'U 'S)

assume bfg := (bijective f & bijective g)

let {f-s&i := (!chain-> [(bijective f) ==> (surjective f & injective f)]

[bijective-definition])};

{g-s&i := (!chain-> [(bijective g) ==> (surjective g & injective g)]

[bijective-definition])};

{f&g-s := (!both (!left-and f-s&i) (!left-and g-s&i))};

{f&g-i := (!both (!right-and f-s&i) (!right-and g-s&i))};

{csp := (!prove compose-surjective-preserving)};

{cip := (!prove compose-injective-preserving)};

{cs&i :=

(!both

(!chain-> [f&g-s ==> (surjective f o g) [csp]])

(!chain-> [f&g-i ==> (injective f o g) [cip]])})

(!chain-> [cs&i ==> (bijective f o g)

[bijective-definition]])

}

(add-theorems theory |{compose-bijective-preserving := proof}||)

close module Function