lib/algebra/Z-poly.ath

Power-series over Z. A power-series is represented as a function p
from N to Z that gives the coefficients of the series; i.e.,
sum (p i) * x**i for i >= 0

except that instead of "(p i)" we write (Apply p i), so that we can
work in first-order logic. In defining arithmetic we only work with
the coefficient functions, not with the monomial terms.

There is no attempt to define arithmetic on this power series
representation algorithmically; it is pure specification because of
the universal quantification over all natural numbers.

Note: For any power series p, p is a polynomial if it is identically
zero or there is some maximal k such that (p k) /= 0. This is
formally stated at the end of the file but is not further developed.

load "integer-plus"

module ZPS {

domain (Fun N Z)

declare zero: (Fun N Z)

declare Apply: [(Fun N Z) N] -> Z

define + := Z.+

define zero := Z.zero

assert equality := (forall p q . (p = q <==> (forall i . (Apply p i) = (Apply q i))))

assert zero-definition := (forall i . (Apply zero i) = zero)

declare +: [(Fun N Z) (Fun N Z)] -> (Fun N Z)

module Plus {

assert definition :=
(forall p q i . (Apply (p + q) i) = (Apply p i) + (Apply q i))

define right-identity := (forall p . p + zero = p)

define left-identity := (forall p . zero + p = p)

conclude right-identity

pick-any p
let {lemma :=
 pick-any i
 (!chain
 (Apply (p + zero) i)
 = (Apply p i) + (Apply zero i) [definition]
 = (Apply p i) + zero [zero-definition]
 = (Apply p i) [Z.Plus.Right-Identity])}

(conclude-> lemma==> (p + zero = p) [equality])

conclude left-identity

pick-any p
let {lemma :=
 pick-any i
 (!chain
 (Apply (zero + p) i)
 = (Apply zero i) + (Apply p i) [definition]
 = zero + (Apply p i) [zero-definition]
 = (Apply p i) [Z.Plus.Left-Identity])}

(conclude-> lemma==> (zero + p = p) [equality])
define commutative := (forall p q . p + q = q + p)
define associative := (forall p q r . (p + q) + r = p + (q + r))

conclude commutative
pick-any p:(Fun N Z) q:(Fun N Z)
let {lemma :=
 pick-any i:N
 (!chain [(Apply (p + q) i)
 = ((Apply p i) +' (Apply q i)) [definition]
 = ((Apply q i) +' (Apply p i)) [Z.Plus.commutative]
 = (Apply (q + p) i) [definition]]})
 (!chain-> [lemma ==> (p + q = q + p) [equality]])
}

conclude associative
pick-any p:(Fun N Z) q:(Fun N Z) r:(Fun N Z)
let {lemma :=
 pick-any i:N
 (!chain
 [(Apply ((p + q) + r) i)
 = ((Apply (p + q) i) +' (Apply r i)) [definition]
 = (((Apply p i) +' (Apply q i)) +' (Apply r i)) [definition]
 = ((Apply p i) +' (Apply q i) +' (Apply r i)) [Z.Plus.associative]
 = ((Apply p i) +' (Apply (q + r) i)) [definition]
 = (Apply (p + (q + r)) i) [definition]]})
 (!chain-> [lemma ==> ((p + q) + r = p + (q + r)) [equality]])
} # Plus

declare Negate: [(Fun N Z)] -> (Fun N Z)
module Negate {
 assert definition := (forall p i . (Apply (Negate p) i) = (Z.negate (Apply p i)))
} # Negate

declare -: [(Fun N Z) (Fun N Z)] -> (Fun N Z)
module Minus {
 assert definition := (forall p q . p - q = p + Negate q)
} # Minus

extend-module Plus {
 define Plus-definition := definition
 open Negate
 open Minus

 define right-inverse := (forall p . p + (Negate p) = zero)
 define left-inverse := (forall p . (Negate p) + p = zero)

 conclude right-inverse
 pick-any p
 let {lemma :=
 pick-any i
 (!chain
 [(Apply (p + (Negate p)) i)
 = ((Apply p i) +' (Apply (Negate p) i)) [Plus-definition]
 = (Negate (Apply p i)) [Negate.definition]
 = zero [Z.Plus.Right-Inverse]
 = (Apply zero i) [zero-definition]])
 (!chain-> [lemma ==> ((p + (Negate p)) = zero) [equality]])
 } # Plus

 conclude left-inverse
 pick-any p
 (!chain [((Negate p) + p)
 = (p + (Negate p)) [commutative]
 = zero [right-inverse]]})

 conclude zero
 pick-any p
 (!chain [(p + (Negate p))
 = zero [right-inverse]])

 # (define-symbol poly
declare poly: ([Fun N Z]) -> Boolean

define <= := N.<=

assert poly-definition :=
 (forall poly .
 [poly p] <=>
 p = zero | (exists k . (Apply p k) /= Z.zero &
 (forall i . k <= i ==> (Apply p i) = Z.zero)))

} # ZPS